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ABSTRACT 
Users often rely on realtime predictions in everyday con-
texts like riding the bus, but may not grasp that such predic-
tions are subject to uncertainty. Existing uncertainty visual-
izations may not align with user needs or how they natural-
ly reason about probability. We present a novel mobile in-
terface design and visualization of uncertainty for transit 
predictions on mobile phones based on discrete outcomes. 
To develop it, we identified domain specific design re-
quirements for visualizing uncertainty in transit prediction 
through: 1) a literature review, 2) a large survey of users of 
a popular realtime transit application, and 3) an iterative 
design process. We present several candidate visualizations 
of uncertainty for realtime transit predictions in a mobile 
context, and we propose a novel discrete representation of 
continuous outcomes designed for small screens, quantile 
dotplots. In a controlled experiment we find that quantile 
dotplots reduce the variance of probabilistic estimates by 
~1.15 times compared to density plots and facilitate more 
confident estimation by end-users in the context of realtime 
transit prediction scenarios.  
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INTRODUCTION 
Quantitative predictions are increasingly ubiquitous in eve-
ryday life. Many such data come in the form of point esti-
mates designed to aid decision-making, such as when the 
next bus is going to arrive, how long a road trip will take, 
whether and when it will rain, or what the high temperature 
will be. Often, people access these predictions on their mo-
bile phones to make in-the-moment decisions that are time-

constrained (providing little opportunity for training, inter-
pretation, or complex interaction) using interfaces that are 
space-constrained (due to screen size).  

For example, Susan might refer to a bus’s predicted arrival 
time on a smartphone application to check if she has time to 
get coffee before her bus to work arrives. She sees that the 
bus is running a few minutes late and is predicted to arrive 
in five minutes. There is no line at the coffee shop, so she 
steps in to order. However, the bus makes up lost time and 
arrives only two minutes later: Susan, still waiting for cof-
fee, misses her bus and is late for a meeting.  

Susan based her decision on a point estimate of arrival time, 
as presented in many predictive systems for bus arrival, 
flight time, or car travel. Her decision is reasonable given 
the point prediction she saw, but real-world predictions are 
subject to uncertainty (e.g., her bus is most likely to come 
in 5 minutes but may come in as little as 1 minute or as 
much as 9 minutes). Designers and analysts are responsible 
for reporting uncertainty with predictions to help people 
make decisions that align with their goals [5,33], yet most 
visualizations of predictions present the data as if it were 
true (Finger & Bizantz [10] as cited in Cook & Thomas 
[5]). Had Susan’s application presented her with a more 
complete representation of the predicted arrival time—
perhaps noting that arrival times earlier than 5 minutes are 
also quite probable—she may not have risked getting cof-
fee. 

Many attempts to communicate uncertainty rely on com-
plex visual representations of probability distributions. For 
example, error bars and probability densities require prior 
experience with statistical models to correctly interpret 
[2,6]. People can better understand probabilistic infor-
mation when it is framed in terms of discrete events. For 
instance, Hoffrage & Gigerenzer [16] found that more med-
ical experts could accurately estimate the positive predic-
tive value (precision) of a test when presented with discrete 
counts or outcomes. Discrete-event representations have 
been used to improve patient understanding of risk, e.g., by 
showing the uncertainty in a medical diagnosis as discrete 
possible outcomes (number of true positive, false positives, 
false negatives, and true negatives) [11]. However, visualiz-
ing discrete approaches to presenting probability distribu-
tions typically requires a large amount of space or time to 
communicate the set of possible outcomes [17]. It is not 
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clear how to effectively communicate discrete outcomes on 
small screens such as mobile devices. 

We study user needs for communicating predictions and 
then design and evaluate novel, goal-directed visualizations 
of hypothetical outcomes in a time- and space-constrained 
mobile application, realtime transit prediction. As a setting 
where users have direct, day-to-day experience with uncer-
tainty, transit prediction provides a representative context in 
which to evaluate how well people can use different uncer-
tainty visualizations. The specific goals of our work are to 
see if and for what reasons people want uncertainty infor-
mation in a bus setting; to identify effective uncertainty 
visualizations for realtime decision-making on a 
smartphone; and to test for differences in how precisely and 
confidently people extract probabilities from different visu-
alizations of uncertainty. 

Our three contributions based on these goals are to: 

1. Develop general and domain-specific design require-
ments and a rich description of user needs for visualiz-
ing uncertainty in transit arrival times based on (i.) an 
analysis of the literature and (ii.) an initial survey of 172 
people who use a popular realtime transit application.  

2. Propose design layouts and discrete-event visualiza-
tions of uncertainty for conveying bus arrival time pre-
dictions on small screens based on an iterative design 
process. We introduce quantile dotplots, a novel modi-
fied dotplot that is a discrete analog to the common prob-
ability density plot. 

3. Identify through a large user study of transit application 
users how accuracy and precision in estimating probabil-
ity compares across several visualizations. Unlike previ-
ous work in communicating uncertainty in continuous 
outcomes [6,14], our study is the first to compare static 
discrete-outcome visualizations of probability distributions 
to continuous representations. We find that a quantile 
dotplot depicting a small number of outcomes has ~ 
1.15 times lower variance than a density plot, making 
probability estimates 1-3 percentage points more precise. 

Our results further understanding of how to communicate 
prediction uncertainty to non-experts in everyday, mobile 
decision-making contexts. Specifically, we recommend 
using low-density dotplots (due to lower variance and high-
er user confidence) or density plots (which have only slight-
ly higher variance, but were more visually appealing) for 
visualizing uncertainty in space-constrained environments. 

BACKGROUND & MOTIVATION  
In this section, we use prior work to establish baseline re-
quirements for the effective communication of uncertainty. 

Improving trust by communicating uncertainty 
Research indicates that displaying uncertainty can improve 
trust and decision-making in everyday contexts. Kay et al. 
[23] studied trust in body weight measurements, arguing 
that single point estimates without uncertainty decrease 

trust and tend to be interpreted as being more precise than 
they actually are. Kay et al. suggest avoiding false preci-
sion in single point estimates by displaying the uncertainty 
associated with weight data to improve trust. Similarly, 
Jung et al. [21] found that displaying the estimated remain-
ing range of an electric vehicle as a gradient plot (i.e., with 
uncertainty) reduced range anxiety in a driving task com-
pared to a single point estimate. 

Joslyn & LeClerc [19] found that displaying uncertainty in 
weather predictions can lead to more optimal decision-
making and trust in a forecast. When asked to make deci-
sions about whether to salt roads (given a virtual budget, 
cost for salting, and cost for failing to salt when they should 
have), people made more optimal decisions when given 
point estimates with probabilistic information. Subjects 
with access to probabilistic information even made more 
optimal decisions than subjects who were explicitly told the 
optimal decision based on a cot-benefit analysis. While the 
decision suggested by a cost-benefit analysis will give the 
best choice on average, always applying the decision will 
sometimes lead people to take precautions that seem unnec-
essary (e.g., salting the roads when the weather ultimately 
does not require it). After experiencing a such few errors, 
people may begin to distrust the strategy and ignore the 
suggested course of action. Probabilistic information, on the 
other hand, provides a more transparent form of infor-
mation for decision making, leading to greater trust. We 
believe this insight also applies to realtime transit predic-
tion: even if we could develop a system to make recom-
mendations like “leave now to make your bus on time”, a 
more transparent communication of uncertainty will 
maintain trust over the long term and leave people the 
agency to make mistakes. 

Visualizing uncertainty 

As extrinsic annotation 
A common approach to visualizing uncertainty is as an ex-
trinsic annotation to a plot of the distribution’s location 
(mean, median, or mode). For example, error bars represent-
ing confidence intervals or prediction intervals1 can be su-
perimposed on bar charts [2]. These intervals are extrinsic 
to other properties like the mean or mode since they are not 
integrated into the same encoding. By contrast, the proba-
bility density and mode are intrinsic to each other in a den-
sity plot, since the mode is visually encoded as the maximum 
of the density. Other distributional properties may be repre-
sented in summary plots using a series of marks (e.g., specif-
ic quantiles in a boxplot or modified box plot as in [6,18,28]).  

                                                           
1 In contrast to a confidence interval, which describes the precision 
of an inferred model parameter (e.g. population mean), a predic-
tion interval is an interval that a given percentage of specific in-
stances are predicted to fall into. While much of the literature 
focuses on confidence intervals (of interest to scientists using 
models for inference), we are more concerned with prediction 
intervals (of interest to an individual who wishes to know how 
likely their bus is to arrive in a specific instance). 



Extrinsic representation can result in interpretation errors 
because the statistical construct (such as one standard error 
or a 95% confidence interval) is poorly understood [2,18], 
because individuals apply heuristics that are not correct 
(such as assuming that overlapping confidence intervals 
always indicate a non-significant difference [7]), or because 
the representation is ambiguous (such as an error bar being 
used to encode standard deviation, standard error, or 95% 
confidence interval). Finally, individuals tend to under-
weight probabilistic information (such as sample size or 
variance) when making judgments in favor of heuristic at-
tributes like representativeness [35]. By separating the 
marks encoding underlying data from those encoding un-
certainty, extrinsic representations are at risk of being 
viewed as peripheral, and consequently discounted when 
making judgments. Thus, to avoid ambiguity, simplify in-
terpretation, and encourage users not to underweight proba-
bility information, we believe that uncertainty should be 
intrinsic to the representation. 

Further, while a given prediction interval corresponds to a 
specific risk tolerance, a user may have differing risk 
thresholds in different contexts. For example, Susan may be 
willing to be late to her meeting 1/20 times, translating to a 
one-sided 95% prediction interval for estimated arrival 
time, yet she may tolerate more risk in different contexts 
like social gatherings or less important meetings. Different 
individuals are also likely to have different risk tolerances. 
Therefore, we believe that effective visualizations of uncer-
tainty in this context should allow users to apply situa-
tion-dependent risk tolerance. 

As abstract, continuous outcomes 
Many other abstract, static representations encode a predic-
tive distribution's probability density function (PDF) intrin-
sically as retinal variables (e.g., color, shape, texture) [3]. 
For example, density plots encode the PDF as distance from 
the x-axis, violin plots encode it as width [1,22,31], and 
gradient plots encode it as opacity. Several studies that in-
clude variants of density and gradient plots find little evi-
dence of a performance difference between the two [6,18]. 
Opacity is a less effective encoding than height, width, or 
area [26]. As a result, we do not test the gradient plot.  

Not all encodings of continuous outcomes using retinal 
variables make distributional properties intrinsic. Ibrekk & 
Morgan [18] compare density plots to plots of cumulative 
density functions (CDFs), amongst several other encodings. 
CDFs encode cumulative density as distance from the x-
axis, allowing the probability of intervals to be estimated 
from height. They found that CDFs were unfamiliar to par-
ticipants and required training. Not surprisingly, people had 
particular difficulty in using CDFs to estimate means, most 
likely because there is no simple visual variable that corre-
sponds to mean (nor mode) on a CDF. 

As hypothetical, discrete outcomes 
We use discrete outcomes to refer to techniques that em-
ploy draws from a probability distribution rather than ab-

stract probabilities of events. Discrete approaches were 
initially found to improve reasoning in textual communica-
tion. Gigerenzer and Hoffrage [12] found that statistical 
word problems described in terms of natural frequencies 
(e.g., 10/100) rather than probabilities (10%) were more 
likely to elicit inferences according to Bayes’ rule in lay-
people. Past work on visualizing uncertainty through hypo-
thetical, discrete outcomes uses spatial or temporal band-
width to communicate. For example, Garcia-Retamero and 
Cokely [11] reviewed studies of several types of visual aids 
for communicating health risks, including discrete outcome 
charts that illustrate treatment risk: they found that display-
ing icon arrays (a grid of pictograms, each representing a 
patient who lived or died) improved the accuracy of peo-
ple’s risk assessment. Hullman et al. use animation to dis-
play discrete outcomes more compactly in space [17], find-
ing that animated discrete outcomes (called hypothetical 
outcome plots, or HOPs) support more accurate probability 
estimates than static alternatives (violin plots and error 
bars) for some tasks. However, by presenting outcomes 
over time, animated techniques bring a time-precision 
trade-off: to make more precise inferences, a user must 
view more outcomes, taking more time [ibid].  

From the evidence in both visual communication and statis-
tical reasoning, we believe that discrete outcomes can im-
prove decision making under uncertainty. However, be-
cause transit decisions are often made quickly in real time 
we focused on developing non-animated presentations of 
discrete outcomes that are glanceable yet compact enough 
for a mobile phone display, in which it is typical to visual-
ize the upcoming arrival of ~10 buses on one screen [9].  

Visualization in space-constrained environments 
To display many buses simultaneously on a mobile phone 
screen, we require our visualizations to be compact. Tech-
niques like horizon graphs [15] and sparklines [34] have 
been proposed for visualizing time-series data in space-
constrained environments. Visualizing uncertainty in transit 
arrival predictions encounters similar issues as these ap-
proaches; for example, a probability density function of 
predicted arrival time will become quite tall as its variance 
decreases (particularly, close to the predicted arrival time 
the prediction will become very precise). Our work demon-
strates possible solutions for the specific context of visual-
izing PDFs on mobile phone displays. 

SURVEY OF EXISTING USERS 
Our reading of the literature provides an initial grounding 
for our design work, but to apply these results to a user-
centered uncertainty visualization we also need to under-
stand user goals. To establish design criteria for representa-
tions of uncertainty based on user needs, we surveyed users of 
one popular realtime transit application, OneBusAway [9].  

Method 
We conducted a survey to identify 1) how users currently 
use realtime bus arrival predictions and 2) their unaddressed 
needs for goal-oriented uncertainty information. We sur-



veyed 172 users of OneBusAway, recruited via social me-
dia and department mailing lists. 

Users’ existing goals 
To identify important user scenarios to address and what 
types of information are most important to those scenarios, 
we asked people about the primary goals they have when 
using OneBusAway. We developed a set of possible ques-
tions (e.g., “When should I start walking to the bus stop to 
catch my bus?”2) that people may ask using the interface 
using observations from previous studies of OneBusAway 
[20], our own reflections on using the system, from infor-
mal interviews with a small group (~15) of other users at 
our university, and through piloting the survey. We present-
ed participants with a list of 9 such questions, and asked 
how often (on a 7-point scale from “never” to “always”) 
they try to answer each question using OneBusAway. We 
also asked them if there are other ways they use One-
BusAway in an open-ended question. 

Problems with OneBusAway and unaddressed needs 
We similarly presented participants with a list of types of 
information not currently provided by OneBusAway and 
asked them to rate the potential helpfulness of these (on a 5 
point scale from “not helpful at all” to “very helpful”). We 
also provided an open-ended question asking about needs 
for uncertainty information not in this list. Finally, we 
asked people to describe the worst experience they have 
had using OneBusAway’s predictions. 

Results and Discussion 

Users’ existing goals 
The top 5 highest-rated questions users currently ask are:  

 When to leave: When should I start walking to my bus?  

 Wait time: If I leave now, how long will I have to wait at 
the bus stop?  

 Time to next bus: I missed my bus, how long will I have 
to wait for the next one to come?  

 Schedule risk: Will I get to a meeting/event on time de-
spite bus delays? This relates to a commonly-described 
worst experience of buses coming later than expected. 
For example: 

A more recent bad experience was when I was waiting for the 
511 or 512 for over an hour. At least five buses should have 
passed, but they either did not show up or they were full and 
didn't let anyone on 

 Schedule opportunity: Will I have enough time to do 
____ before the bus arrives? This relates to a commonly-
described worst experience of the bus coming earlier than 
expected after someone has used the prediction to decide 
to do something else before going to the bus; e.g.:  

It showed delays on a bus due to which I didn't leave home as I 
didn't want to wait at the bus stop for long (the bus stop is 4 

                                                           
2 The full survey is available in our supplementary material. 

mins from my home), but it suddenly came on time and I missed 
it. Sometimes, it even comes early when it shows delay. 

Problems with OneBusAway and unaddressed needs 
The top three questions users would like to be able to ask, 
but which are not well-supported by the current One-
BusAway interface, are:  

 Status probability: What is the chance OBA is showing 
the correct arrival status? This problem was also reflected 
in a commonly-described worst experience, wherein the 
bus never shows up and people have to make alternative 
plans. For example: 

My bus is perpetually 9 minutes away...while I watch alterna-
tive buses pass me thinking that oh, mine is going to be here 
soon only to eventually see "no information" for my bus. I could 
have been on my backup bus a half hour ago!!! 

It was common for people to report their worst experi-
ences were related to status probability: for example, 
OneBusAway said “departed”, but the bus had not ar-
rived; it said “arriving” but had already departed. Any 
noisy estimate reduced to a categorical status will exhibit 
these types of errors which could be mitigated by convey-
ing status probabilistically.   

 Prediction variance: What is the chance the predicted 
arrival time will change unexpectedly?  

 Schedule frequency: How frequently do buses arrive at 
various times in the day?  

DESIGN REQUIREMENTS 
Based on our literature review and user survey, we identi-
fied the following necessary design elements: 

Point estimate of time to arrival: To support glanceabil-
ity, we think that the point estimate of arrival time is neces-
sary: people often use OneBusAway to make fast decisions 
about when to arrive at the bus stop. In addition, previous 
work has found that even when providing probabilistic es-
timates, people still want a point estimate. The existing 
point estimate of OneBusAway supports estimation tasks 
from our survey like when to leave, wait time, and time to 
next bus, though without communicating risk. 

Probabilistic estimate of time to arrival: While people 
often want a point estimate of arrival time, a point estimate 
without uncertainty will often convey a false precision. A 
probabilistic estimate will help users understand that there 
is a chance the bus will come earlier or later than the point 
estimate. This helps people assess schedule risk and sched-
ule opportunities. A probabilistic estimate also allows peo-
ple to make conservative estimates while planning for meet-
ings, or less conservative estimates for low risk situations – 
that is probabilistic estimates allow situation-dependent risk 
tolerance. This will help people better answer questions 
about when to leave, wait time, and time to next bus (the 
highest rated goals) and prepare people for commonly-
reported worst experiences like a bus coming unexpectedly 
early or late. 



Probabilistic estimate of arrival status: For example, 
what is the chance the bus has already arrived? Among 
questions not currently supported by OneBusAway, survey 
respondents most wanted support for this question (status 
probability), and commonly reported worst experiences 
related to it. 

Data freshness: Because OneBusAway does not currently 
give probabilistic estimates, one of the only available sig-
nals for expert users to assess risk is the freshness of the 
data: OneBusAway indicates the time of the last update for 
realtime predictions and whether the current prediction is 
based on realtime data (it reflects the scheduled arrival time 
when realtime data is not available). This freshness infor-
mation should either be provided to users in a redesigned 
interface, or should be incorporated into any models driving 
probabilistic estimates. 

We believe these design elements will address each goal 
identified in the user survey with the exception of the goal 
of knowing schedule frequency. We felt that this goal is 
better addressed through a separate interface, such as a trip 
planner or schedule explorer in a mapping application. 
Schedule frequency is less relevant to in-the-moment deci-
sion-making than it is to long-term planning (can I rely on a 
bus arriving within some amount of time?). When schedule 
frequency is relevant to in-the-moment decisions, it typical-
ly reduces to other goals, like time to next bus. 

DESIGN 
We conducted an iterative design process focused on the 
design requirements set out above. This process began with 
a wide exploration of ideas through sketching, followed by 
paper prototyping in increasing fidelity, and culminated in 
digital mockups. These phases were informed by ongoing 
user feedback gained through informal down-the-hall test-
ing with a total of 24 users. During informal testing, we 
presented users with hypothetical scenarios of use and 
asked them to think aloud as they interpreted the display. 

Many of the design issues we encountered are somewhat 
orthogonal to specific of encodings of probability: given a 
particular timeline layout, for example, we could encode 
probability in many ways (e.g., as area, discrete events, a 
gradient). We first present our proposed set of designs and 
their rationale, then discuss possible techniques for encod-
ing probability on small screens. 

Proposed designs and rationale 
Our proposed designs, instantiated with one particular visu-
alization of uncertainty (density plot) out of several possi-
ble, are shown in Figure 1. Here we describe decisions we 
made to resolve design tensions and to match user goals. 

Different layouts better serve different use cases 
We developed two alternative layouts, bus-timeline and 
route-timeline. The bus-timeline layout gives a timeline for 
a single bus on each row, similar to how the existing One-
BusAway app displays a single row per bus, sorted by pre-
dicted time to arrival. This simplifies understanding and 

navigation, but is less compact in addressing problems like 
assessing schedule frequency, and, once the probabilistic 
visualizations are added, less compact than the current ap-
plication. Route-timeline, by contrast, creates a more com-
plex display and navigation (requiring navigation in two 
dimensions), but more easily aids understanding of sched-
ule frequency (how often is the bus) and schedule oppor-
tunity (since if one is considering the risk associated with 
missing the next bus, it is easier to see how soon the bus 
after that is coming and factor that into one’s decision).  

Point estimates and probabilistic  
estimates should coincide spatially 
We explored several tradeoffs between prominent point 
estimates versus probabilistic estimates, what we call the 
glanceability/false precision tradeoff. A too-prominent 
display of the point estimate causes users to ignore the 
probabilistic one, thus still giving a false sense of precision; 
a less-glanceable point estimate will be difficult to skim and 
frustrating to use. We want a display that is glanceable but 
which also does not convey false precision. To resolve this, 
we concluded that these two elements should coincide spa-
tially: that is, looking at the point estimate should encour-
age the user to also be looking at the probabilistic estimate. 
We had considered designs in which the point estimate was 
along the right-hand edge of the display (Figure 3), as in the 
original OneBusAway. We concluded that this facilitated 
glanceability, but also allowed users to pay too little atten-
tion to the probabilistic estimates. Moving the point esti-
mate onto the probability distribution resolved this tension. 

Annotated timelines give probabilistic  
estimates of status “for free” 
While we considered designs that more explicitly com-
municate the probability that the bus has arrived, we real-
ized that an annotated timeline combined with probabilistic 
predictions communicates this implicitly. By denoting areas 
that correspond to “departed”, “now”, and “on the way” on 
the timeline, users can directly read these probabilities from 
the distributions depicted; see the timeline annotations 
across the top of Figure 1.  

 
Figure 1. Alternative layouts we developed. (a) Bus Timeline: 
Each row (timeline) shows one predicted bus. (b) Route Time-
line: Each row shows all predicted buses from a given route. 

Bus Timeline Route Timeline



When to leave is implicit in time to arrival 
We considered designs that communicated when someone 
should leave to catch their bus; i.e. designs that directly 
addressed the when to leave goal. However, there are sever-
al difficulties with this approach: first, when to leave is not 
the only goal for which people use OneBusAway; thus it 
would need to be integrated into displays communicating 
information like time to arrival (or alternate designs devel-
oped for both goals). This exacerbates space issues. Esti-
mating when to leave also requires substantial knowledge 
about the users’ plans, and introduces further uncertainty 
(e.g., how long does it take to walk to the stop?). 

Data freshness may be subsumed by an improved model 
OneBusAway often does not have truly realtime infor-
mation, but instead updates when buses check in. As noted 
previously, expert users often refer to the last check-in time 
as a way to evaluate how much they trust the application’s 
prediction. To facilitate this use, we considered several de-
signs that included indicators of data freshness or last up-
date times. Ultimately we decided not to include this infor-
mation, as the model used to generate the probabilistic arri-
val information should take data freshness into account to 
provide better estimates to all users, rather than continu-
ing to support a workaround used by expert users.  

Synchronized timelines allow comparison between buses 
In our designs, the axis of the timeline in each row is syn-
chronized to the other rows, facilitating comparison be-
tween buses. We considered designs with each row having 
its own time range depending on the prediction (e.g., one 
row with low variance might show a density plot covering 
5-10 minutes from now; another with high variance might 
have an axis covering 5-15 minutes from now). However, 
such relative timelines are very difficult to compare be-
tween buses on different rows—buses with different vari-
ance might look similar because the relative timeline would 
also cause the density to be scaled.  

Encoding probability in space-constrained environments 
Given our chosen design, we need an effective way to en-
code probability at small sizes. We considered several ap-
proaches (Figure 4). Most of these are drawn from the liter-
ature, including density plots, violin plots, and gradient 
plots. We also propose variants of two existing discrete 
plots for visualizing predictive distributions as discrete out-
comes, stripeplots and dotplots. 

Discrete outcome visualizations of continuous variables 
We explored several ways to convey a continuous predic-
tive probability distribution as discrete outcomes. The first 
is based on Wilkinson’s dotplots [37], which are typically 
used to communicate the distribution of experimental sam-
ples (e.g., [27]). We instead adopt these plots to display 
theoretical quantiles from a predictive distribution. As Wil-
kinson notes, correctly-produced dotplots have the desirable 
property of also conveying the density of the distribution. 
Our quantile dotplots have this property, as well as the 
additional property of allowing direct estimation of arbi-
trary (to a certain precision) predictive intervals through 
counting (see  Figure 2). We believe that this form of natu-
ral reasoning about predictive intervals—as frequencies—
should allow people to obtain precise estimates of predic-
tive intervals in a way that is easily understood. 

We also use stripeplots [8] of theoretical quantiles to 
communicate a continuous probabilistic prediction as hypo-
thetical outcomes. In these, the density of stripes in a region 
encodes probability density, and as in quantile dotplots 
(though less easily), predictive intervals can be estimated 
directly through counting. Where dotplots are a discrete 
analog to a density plot, stripeplots can be thought of as the 
discrete analog to a gradient plot. 

Tight densities require special attention on small screens 
Displaying many rows of predictions on a small screen ne-
cessitates relatively small row height. Unfortunately, distri-
butions with low variance will become very tall, exceeding 

 
Figure 3. An example of a design we rejected for placing point 
predictions (along the right side) outside the context of uncertain-

ty, making it more likely to give users a false sense of precision. 

 
Figure 2. Explanation of quantile dotplots. 

To generate a discrete plot of this distribution, 
we could try taking random draws from it. 
However, this approach is noisy: it may be 
very different from one instance to the next.

Probability density of Normal distribution

Instead, we use the quantile function (inverse CDF) 
of the distribution to generate “draws” from 
evenly-spaced quantiles.

We plot the quantile “draws” using a 
Wilkinsonian dotplot, yielding what we call a 
quantile dotplot: a consistent discrete 
representation of a probability distribution.

By using quantiles we facilitate interval 
estimation from frequencies: e.g., knowing there 
are 50 dots here, if we are willing to miss our 
bus 3/50 times, we can count 3 dots from the 
left to get a one-sided 94% (1 − 3/50) prediction 
interval corresponding to that risk tolerance.



the row height. Traditional solutions include horizon charts 
[15] (which we suspect are unfamiliar to lay users), or nor-
malizing all density plots to the same height (which makes 
comparison difficult). This problem is most pronounced on 
buses with tight variance, i.e., the most precise predictions. 
Consequently, for density plots we adopted the compromise 
approach of scaling down the max height only when it ex-
ceeds the row height. This adjustment affects only the pre-
dictions of which the model is most certain, so fine-grained 
resolution of probability becomes less important to most 
goals. This adjustment is required only for density, dotplot-
50, and dotplot-100 (in the dense dotplots, instead of scal-
ing we reduce the dot-spacing). Dotplot-20 and stripeplot 
have the advantage of a consistent representation of proba-
bility in tight densities: they need not be modified. 

Countability may vary from tails to body  
Care must be taken in deciding how many hypothetical 
draws (quantiles) to include in discrete plots. Figure 4 com-
pares some of the tradeoffs here: With few draws, as in 
dotplot-20, it is easy to count the dots in the tails and body 
of the distribution, but the density is less well-resolved. 
With many dots, as in dotplot-100, counting in the tails is 
often still easy, but in the body overwhelming; however, 
density is very well-resolved.  

Selected encodings 
To select the encodings to evaluate for our final design, we 
constructed the matrix shown in Figure 4 comparing vari-
ous properties of the encodings. We selected density, 
stripeplot-50, dotplot-20, and dotplot-100 as representing a 
wide range of possible trade-offs suggested by this matrix. 

EXPERIMENT 
We conducted an online survey to evaluate the effective-
ness of our designs in conveying uncertainty. The goal of 
this survey was to assess how well people can interpret 
probabilistic predictions from the visualizations and to elicit 
their preferences for how the data should be displayed.  

Method 
To assess how well people can judge probability from our 
visualizations, we adopted an approach similar to that of 
Ibrekk and Morgan [18], who presented various representa-
tions of uncertainty for weather forecasts and asked subjects 
to report probabilities (e.g., snowfall >2 inches, or between 
2 and 12 inches).  

We created four scenarios based on the goals identified in 
our user survey, each with two questions about the proba-
bility of bus arrival. For example, in one scenario the re-
spondent is waiting for a bus, and must decide if they have 
enough time to get coffee before the bus arrives. They are 
asked what the chance is that the bus will arrive 10 minutes 
or earlier, and respond using a visual analog scale, a 100-
point slider from 0/100 to 100/100. We call their response 
the estimated p (in contrast to the true p, which we calculate 
from the underlying probability distribution). A bubble on 
the response slider shows this chance expressed in all three 
denominators used by the various visualization types (e.g. 

“20/100, 10/50, 4/20”), so that participants do not have to 
do mental arithmetic in the dotplot and stripeplot condi-
tions. The predictions in each scenario were generated from 
models based on Box-Cox t distributions [29] fit to ~2 
weeks worth of arrival time data for actual buses in Seattle, 
but the buses were given fake route names. Participants are 
also asked how confident they are in each probability they 
estimate. At the end of the survey they rate the ease of use 
and visual appeal of each visualization. All subjective rat-
ings are made on 100-point visual analog scales. 

Scenario order was randomized between participants. Each 
participant saw each visualization type (density, stripeplot, 
dotplot-20, or dotplot-100) once. Before each scenario, they 
were also given a brief tutorial explaining the encoding they 
were about to use. Pairings between scenario and visualiza-
tion type were also randomized. Participants were also ran-
domly assigned to see all visualizations in the bus-timeline 
or route-timeline layout. A full version of the survey can be 
found in the supplementary material. 

Participants 
We recruited participants from a variety of locations, in-
cluding department mailing lists, a local transit blog, and a 
local forum on reddit.com. Participants were entered into a 
raffle for 1 $100 Amazon.com gift card and an additional 

 
Figure 5. The four types of visualizations selected for evaluation.  
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Figure 4. Comparison of various encodings of probability we 

considered for use in our designs. 
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$25 gift card per 100 participants. Since our primary re-
search questions were about the effect of visualization 
types, not layout, we ran the first 100 participants only on 
the bus-timeline condition. This threshold was chosen based 
on a power analysis of data from Hullman et al. [17], which 
suggested a power of at least .8 with our design for detect-
ing similar effect sizes to that study after 100 participants. 
After reaching 100 participants in the bus-timeline layout, 
the remainder of participants were randomly assigned to 
either the bus-timeline or route-timeline layout. After re-
moving 9 participants for incomplete data, we had 320 par-
ticipants in the bus-timeline and 221 participants in the 
route-timeline layouts. Our participants skewed male (71% 
male). 90% were existing OneBusAway users.  

Results 
To understand how well each visualization performs, we 
can examine the error in people’s probability estimates. We 
break error into bias (do people over- or under- estimate 
probabilities on average?) and variance (how self-consistent 
are people’s estimates, whether biased or not?). So long as 
the bias is low, we believe that variance is the more im-
portant component of error in this task: over time people 
can adjust their risk tolerance to a small but consistent bias, 
but they cannot do so if their estimates are not consistent. 
We consider overall error, bias, and variance in turn. 

Overall error in participants’ probability estimates 
We start by looking at the overall shape of participants’ 
estimation error: logit(estimated p) – logit(true p) for each 
question.4 Figure 6A shows the density of those differences, 
broken down by visualization type. The bias in responses is 
consistently low and positive across conditions: note that 
the error distributions all peak in approximately the same 
place, slightly to the right of 0 (the dashed line). Variance 
appears to be lower in dotplot-20 compared to the other visu-
alizations: the distribution of error is narrower. However, this 
does not necessarily equate to more self-consistent responses. 
We therefore use a model to assess bias and variance more 
systematically and to account for within participant effects. 

Regression model for bias and variance 
We fit a beta regression to participants’ estimated probabili-
ties, which assumes responses are distributed according to a 
beta distribution. This distribution is defined on (0, 1) and 
naturally accounts for the fact that responses on a bounded 
interval have non-constant variance.5 In other words, the 
variance of estimated p changes with the probability being 
estimated. For example, at probability = 0.5 one can guess 
0.5 + 0.4 = 0.9; at probability = 0.9 one cannot guess 0.9 + 
0.4 = 1.3 (it is greater than 1.0), so responses “bunch up” 
[30] under 1.0 and variance is lower. Beta regression has 

                                                           
4 The logit function is an s-shaped function that transforms probabil-
ities into log-odds, often used when to simplify the analysis of prob-
abilities by transforming them onto the unbounded real line. 

5 Because 0 and 1 are not defined in the beta distribution, we treat 
answers of 0 and 1 from our visual analog scales as 0.001 and 0.999. 

been shown to be better-suited to this type of data than line-
ar regression [30]. 

Our regression uses a submodel for the mean (in logit-
space) and the dispersion (proportional to variance, in log-
space) [30]. This allows us to model the bias of people's 
estimated p as effects on the mean of their responses, and 
the variance as effects on the dispersion of their responses. 
Specifically, we include visualization, logit(true p), and 
their interaction as fixed effects on mean response. We in-
clude visualization, layout, and gender as fixed effects on 
the dispersion (in other words, some visualizations or lay-
outs may be harder to use, resulting in more variable re-
sponses; and men may be better or worse at this task). We 
also include participant and participant × visualization as 
random effects (some people may be worse at this task, or 
worse at this task on specific visualizations), and question 
as a random effect (some questions may be harder). 

We use a Bayesian model, which allows us to build on pre-
vious results by specifying prior information for effects, 
and report results primarily as posterior distributions with 
95% credibility intervals (the Bayesian analog to a confi-
dence interval) [24,25]. We derive priors from fitting a sim-
ilar model to the data from Hullman et al.[17], which had a 
similar task (estimating cumulative probabilities on three 
visualizations: a violin plot, animated hypothetical out-
comes, and error bars). We set Gaussian priors for fixed 
effects in our model that capture the sizes of effects seen in 
the Hullman et al. data within 1-2 standard deviations, with 
skeptical means (0 for intercept and 1 for slope in logit-logit 
space, corresponding to an unbiased observ`er). We use the 
posterior estimate of the variance of the random effect of 
participant in that model as the prior for the variance of 
random effects in our analysis. Full priors and posterior 
estimates are available with our data. 6 

Bias in respondent probability estimates 
Consistent with Figure 6A, our regression found that esti-
mates were slightly biased on average, and these biases 
were similar across conditions (more details in supplemen-
tary material). Our beta regression model accounts for this 
bias when estimating the variance of participant responses. 
The slight overestimation here may be because all of our 
distributions are right-tailed (positively skewed). This is 
generally true of transit arrival time data; thus, if the skew 
is the source of this bias we should expect to see this effect 
in real-world situations in our domain but perhaps not oth-
ers. Skewness of distributions is known to affect risk aver-

                                                           
6 Note that similar results were obtained using more default priors, 
showing our results are not highly sensitive to choice of priors 
here. The model was fit using Stan [32], with 16 chains having 
20,000 iterations each (half warmup), thinned at 8, for a final 
sample size of 20,000. Parameters of interest all had effective 
sample sizes > 10,000 and potential scale reduction factor < 1.001. 
See https://github.com/mjskay/when-ish-is-my-bus for sur-
vey data and code (DOI: 10.6084/m9.figshare.2061876) 



sion in financial decisions made from density plots [36]; 
these biases may be related. 

Variance in participant probability estimates 
As noted above, we believe that variance is more important 
than bias in this task, as low variance would allow people to 
adjust their behavior to a consistent bias over long-term 
usage. We estimate the variance associated with each visu-
alization as a standard deviation in estimated p if p is fixed 
at 0.5 (Figure 6B). Figure 7 shows pairwise comparisons of 
SD for all visualizations (pair specified in left column). 
Dotplot-20 has the lowest estimated variance (SD of ~11 
percentage points), being about 1.15 times more precise 
than density plots. By contrast, dotplot-100 has similar vari-
ance to density, consistent with people estimating area in-
stead of counting dots, perhaps because there are more dots 
than they may be willing to count. 

Confidence 
Ideally, greater confidence in a given answer would be as-
sociated with less error, indicating that people are able to 
self-assess their accuracy. We used a similar beta regression 
to model confidence in estimates depending on visualiza-
tion. Participants expressed higher confidence in their esti-
mates on average in the dotplot-20 condition (mean = 
81/100, 95% CI: [77, 83]) than the next-most-confident 
condition, dotplot-100 (mean = 73, 95% CI: [71, 76]). At 
the same time, confidence in the dotplot-20 condition corre-
lated negatively with absolute estimation error (Spearman’s 
ρ = −0.18, 95% CI: [−0.13, −0.25]), an association we did 
not see in other conditions. At least with dotplot-20, people 
have some ability to assess how good their own estimates 
are. We suspect that this may be due to the fact that with 
dotplot-20 one can choose either to be precise (by counting 
dots) or to give a less precise, less confident answer (by 
approximating density or area instead of counting). 

Ease of use and visual appeal 
We also analyzed ease of use and visual appeal using beta 
regression. Density had the highest visual appeal (mean = 
66, 95% CI: [64, 67]); dotplot-20 was less visually appeal-

ing (mean = 43, 95% CI: [42, 45]). However, despite these 
differences, ease of use for all visualizations except stripep-
lot was ~60 (stripeplot mean = 35, 95% CI: [33, 36]), sug-
gesting only stripeplot was found consistently difficult to 
use. This may reflect stripeplot’s much higher estimation 
variance than the other visualizations (higher standard devi-
ation by about 4-5 percentage points when probability = 
0.5—Figure 6B—or about 1.44 times the SD of dotplot-
20—Figure 7). 

DISCUSSION  

Discrete outcomes work best in small numbers 
Our results suggest that discrete-outcome visualizations of 
uncertainty can improve probability estimation in space-
constrained visualizations of continuous outcomes if care is 
taken in their instantiation. While dotplot-20 improved es-
timation variance over density, dotplot-100 performed very 
similarly to density. In addition, Stripeplot performed very 
poorly. We believe this may reflect the principle that dis-
crete plots with too many outcomes converge to continuous 
encodings: since counting dots is arduous in dotplot-100 
and stripeplot-50, people are more likely to read them like 
density plots and gradient plots (respectively), nullifying 

Figure 6. Variance of respondent estimates of probability intervals, (A) as raw data and (B) as estimated by our model. 
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the value of the discrete outcomes. In dotplot-20, people 
can count quickly by using subitizing, the ability to quickly 
recognize rather than count groups of items in number < ~5 
[4,13]. Since the vertical groups of dots in dotplot-20 are 
rarely are over 5 dots high, interval judgements (particular-
ly close to the tails) are often reduced to quick, accurate 
judgments through subitizing. Thus, we recommend dis-
crete outcome plots with few enough outcomes to take 
advantage of subitizing. 

Implications for design and future work 

The value of communicating uncertainty 
In the first survey, users described goals and unfortunate 
experiences in OneBusAway that information about uncer-
tainty could help mitigate. In the second survey, most re-
spondents said they appreciated the idea of representing un-
certainty. They said this information could help them make 
better decisions, alleviate their anxiety when the app’s infor-
mation does not match their knowledge, or help them with a 
problem they commonly experience with OneBusAway. 

A minority of respondents said they did not care about the 
uncertainty information: that point estimates are sufficient. 
In contrast to respondents who said the information could 
help, these respondents tended to say the point prediction 
presented in OneBusAway was consistently accurate. An 
additional minority actively did not want to receive any 
information about uncertainty. Several of these people 
compared evaluating probability information in visualiza-
tions to statistics courses. Five feared that, if given uncer-
tainty information, they would become responsible for mak-
ing decisions, and would have to take responsibility for the 
wrong decision: “you're more likely to be unhappy than if 
you missed the bus and can just blame the app.” While this 
represents a small number of participants, we believe that 
future work is necessary to see how widespread such reac-
tions may be in real-world deployments.   

Navigating the precision versus glanceability tradeoff 
Designers should attend to the balance of precision and 
glanceability in representing uncertainty. Participants were 
divided over whether our visualizations were appropriately 
glanceable for a transit mobile app. While some said the 
new designs were easy and clear, more described feeling 
overwhelmed at least in the context of our experiment and 
the majority of commenters expressed doubts about being 
able to use these visualizations while walking to a bus stop. 
Despite respondent concerns about whether they or others 
could understand the visualizations, our survey results 
overwhelmingly show that people understood them. 

The designs presented here should be evaluated in longitu-
dinal field studies to assess actual acceptability and use. For 
example, survey respondents were concerned that the dot 
plots would compel them to count, but in practice they may 
find that they count when they want precise estimates but 
are able to get a good overview from a quick glance. As 
transit prediction is an everyday practice for many, more 

sophisticated use of the visualizations may develop over 
time, making learning an important component to under-
stand in this space. 

The designs we evaluated also did not fully exploit interac-
tivity, which might enhance the glanceability of the current 
static visualizations while preserving uncertainty infor-
mation. For example, we prototyped a “risk slider” that lets 
people move the point estimate to match a specific risk 
threshold; this would allow them to fit the point estimate to 
their overall preferences or change it to match a specific 
situation. This feature can be incorporated into any of our 
proposed designs and should be evaluated as a technique to 
help resolve the glanceability/false precision tradeoff.  

Our research demonstrates that our visualizations can help 
people accurately, precisely, and confidently evaluate un-
certainty, laying the groundwork for future studies evaluat-
ing the effects of differences in precision on behavioral 
measures.  

Visual appeal vs. estimation tradeoff  
Related to the precision/glanceability tradeoff, people were 
also divided about preferring the dot plots or the density 
plots. The dotplots, while ~1.15 times more precise than the 
density plots and yielding higher confidence, were also rat-
ed less visually appealing. We do not know if this is a con-
sequence of unfamiliarity, or if it is because the dotplots are 
visually busier. It is worth investigating whether the im-
provement from dotplots is worth decreased visual appeal, 
or if participants might get used to the dotplots over time. 

CONCLUSION  
In this paper, we identify general design requirements for 
visualizing uncertainty on mobile applications as well as 
domain-specific design requirements for visualizing uncer-
tainty in transit arrival times. From these, we propose a 
mobile interface for communicating uncertainty in realtime 
transit predictions in a way that supports users' goals. We 
developed and evaluated candidate visualizations, including 
a novel discrete representation of continuous outcomes de-
signed for small screens, quantile dotplots. In a controlled 
experiment, quantile dotplots improved probabilistic esti-
mates over traditional density plots and facilitated more 
confident estimation by end-users. Researchers and design-
ers can apply and evaluate these interfaces in the field, with 
particular attention to opportunities to employ interactivity 
and other techniques to balance precision and glanceability. 
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